Protein adsorption to planar electrochemical sensors and sensor materials *

نویسندگان

  • Caroline Lim
  • Steven Slack
  • Stefan Ufer
  • Ernő Lindner
چکیده

In electrochemical sensing devices, aimed for acute and chronic in vivo application, the active surface of the sensor is often negligible compared to the overall surface area of the device in contact with the biological host. Consequently, to minimize the perturbation of an implanted sensor on the in vivo environment the chemical composition and surface texturing of the complete device (the active sensor, sensor substrate, and “accessories”) have to be considered. In our work, the adsorption of three abundant proteins (albumin, IgG, and fibrinogen) was determined quantitatively on untreated and modified sensor substrates and sensing membrane surfaces. In this study, a flexible polyimide-based material (Kapton®) was used as sensor substrate with or without an amorphous diamond-like carbon (DLC) or an amorphous oxygen-containing DLC (o-DLC) coating. The ion-sensitive membranes were cast from high-molecular-weight (HMW) or carboxylated poly(vinyl chloride) (PVC) and were doped with increasing concentrations of highly hydrophilic poly(ethylene oxide) (PEO). The potentiometric characteristics of the potassium-selective membranes cast with up to 6 % PEO were the same as those without PEO. However, the PEO-modified PVC membranes elicited a large amount of protein adsorption, especially in terms of albumin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical non-enzymatic glucose sensors.

The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this p...

متن کامل

Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors

With an ever-increasing need for thin, flexible and functional materials in electrochemical systems, the layer-by-layer (LbL) technique provides a simple and affordable route in creating new, active electrodes and electrolytes. The LbL technique, which is based upon the alternate adsorption of oppositely charged species from aqueous solution, possesses unprecedented control of materials selecti...

متن کامل

Recent Advances in Polymeric Materials Used as Electron Mediators and Immobilizing Matrices in Developing Enzyme Electrodes

Different classes of polymeric materials such as nanomaterials, sol-gel materials, conducting polymers, functional polymers and biomaterials have been used in the design of sensors and biosensors. Various methods have been used, for example from direct adsorption, covalent bonding, crossing-linking with glutaraldehyde on composites to mixing the enzymes or use of functionalized beads for the de...

متن کامل

Adsorption of Gas Molecules on Graphene Doped with Mono and Dual Boron as Highly Sensitive Sensors and Catalysts

First-principle calculations have been investigated to study the adsorption of the molecules (SO2, CO, NH3, CO2, NO2, and NO) on the surface of mono boron (B) B-doped and dual B-doped graphene sheets to explore their potential applications as sensors. Our findings indicate that the adsorption of (CO and NH3) on B-doped graphene and (CO and ...

متن کامل

Effect of the Interparticle Interactions on Adsorption-Induced Frequency Shift of Nano-beam-Based Nanoscale Mass-Sensors: A Theoretical Study

It is well-known that the Interparticle interactions between adsorbates and surface of an adsorbent can affect the surface morphology. One of the consequences of this issue is that the resonant frequency of a nanoscale resonator can be changed due to adsorption. In this study we have chosen a cantilever-based nanoscale mass-sensor with a single nanoparticle at its tip. Using the classical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004